Casa » Arte botánico » Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach Libro EPUB, PDF

Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach Libro EPUB, PDF

Obtenga el libro de Descarga gratuita de Ebooks en español Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach 978-0387953649 por Kenneth P. Burnham FB2 iBook EPUB en formato PDF o EPUB. Puedes leer cualquier libro en línea o guardarlo en tus dispositivos. Cualquier libro está disponible para descargar sin necesidad de gastar dinero.

Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach Descarga gratuita de Ebooks en español
  • Libro de calificación:
    4.74 de 5 (162 votos)
  • Título Original: Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach
  • Autor del libro: Kenneth P. Burnham
  • ISBN: 978-0387953649
  • Idioma: ES
  • Páginas recuento:496
  • Realese fecha:1998-03-16
  • Descargar Formatos: DOC, CHM, EPUB, AZW, PGD, MOBI, iBOOKS, MS WORD
  • Tamaño de Archivo: 14.74 Mb
  • Descargar: 3162
Secured

Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach por Kenneth P. Burnham Libro PDF, EPUB

A unique and comprehensive text on the philosophy of model-based data analysis and strategy for the analysis of empirical data. The book introduces information theoretic approaches and focuses critical attention on a priori modeling and the selection of a good approximating model that best represents the inference supported by the data. It contains several new approaches t A unique and comprehensive text on the philosophy of model-based data analysis and strategy for the analysis of empirical data. The book introduces information theoretic approaches and focuses critical attention on a priori modeling and the selection of a good approximating model that best represents the inference supported by the data. It contains several new approaches to estimating model selection uncertainty and incorporating selection uncertainty into estimates of precision. An array of examples is given to illustrate various technical issues. The text has been written for biologists and statisticians using models for making inferences from empirical data.